LESSON PLAN (ODD SEMESTER 2025-26)

BHAVANA ARORA ASSISTANT PROFESSOR IN CHEMISTRY GOVERNMENT COLLEGE MOHNA

B.Sc. 1st Year (DSC-Chemistry)

Month/Week	First week	Second week	Third week	Fourth week
August	Ionic bond lattice energy, Born-Haber cycle and its applications, Fajan's rules, hydration energy, bond moment,	Dipole moment and percentage ionic character. Resonance and resonance energy: study of some inorganic and organic compounds.	Molecular Orbital Approach: LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combination of atomic orbitals, non- bonding combination of orbitals,	Heteronuclear diatomic molecules Comparison of VB and MO approaches.
September	Oxides – structures of oxides of N, P. Oxyacids – structure and relative acid strengths of oxyacids of nitrogen and phosphorus. Structure of white, yellow and red phosphorus. Oxyacids of sulphur – structures and acidic strength,	H2O2–structure, properties and uses. Basic properties of halogen, interhalogen compounds-types and properties, halogen-acids and oxyacids of chlorine – structure and comparison of acidic strength.	Brönsted–Lowry concept, conjugate acids and bases, relative strengths of acids and bases, effects of substituent and solvent, differentiating and levelling solvents. Lewis acid-base concept, classification of Lewis acids and bases, Lux-Flood concept.	Maxwell's distribution of velocities and energies, collision number, collision frequency and mean free path, deviation of real gases from ideal behaviour,
October	Critical temperature, critical pressure, critical volume and their determination. Compressibility factor. Law of corresponding states.	Electronic displacements and its applications, reaction intermediates and concept of aromaticity. Concept of isomerism,	Revision	Optical activity, elements of symmetry, molecular chirality, enantiomers, stereogenic centre, properties of enantiomers,

		types of isomerism, optical		
		isomerism,		
November	Chiral and achiral molecules with two stereogenic centres, diastereomers, threo and erythro diastereomers, meso compounds,	Resolution of enantiomers, inversion, retention and racemization, relative and absolute configuration, sequence rules, R & S system of	Revision	Revision
		nomenclature.		

B.Sc. II Year (DSC-Chemistry)

Month/Week	First week	Second week	Third week	Fourth week
August	General	magnetic and	potassium	Third law of
	characteristics of	spectral	dichromate,	thermodynamics:
	transition metals,	properties. Binary	potassium	Nernst heat
	brief discussion of	compounds and	permanganate,	theorem, concept
	differences	complexes	potassium	of residual
	between the first,	illustrating	ferrocyanide,	entropy,
	second and	relative stability	potassium	evaluation of
	third transition	of their oxidation	ferricyanide,	absolute
	series, stability of	states. Chemistry	sodium	entropy from
	various oxidation	of Ti, V, Cr,	nitroprusside and	heat capacity
	states,	Mn, Fe, Co, Mo	sodium	data. Gibbs and
		and W in various	cobaltinitrite.	Helmholtz
		oxidation states,		functions,
September	Gibbs function (G)	thermodynamic	Arrhenius theory	Electrolytic
	and Helmholtz	equilibrium	of ionization,	conduction,
	function (A) as	and their	Ostwald's Dilution	factors affecting
	thermodynamic	advantage over	Law. Debye-	electrolytic
	quantities, A & G	entropy change.	Huckel–Onsager's	conduction.
	as criteria for	Variation of G and	equation for	Applications of
	spontaneity,	A with P, V and T.	strong	conductivity
		Partial molar	electrolytes	measurements:
		quantities.	(elementary	determination of
			treatment only),	dissociation
			transport	constant (Ka) and
			number,	degree of
			definition and	dissociation,
			determination by	determination of
			Hittorf's	solubility product

			methods.	of sparingly soluble salts,
October	Conductometric titrations. Definition of pH and pKa, buffer solution, Reversible electrodes	Alkyl halide: Nomenclature and classes of alkyl halides, general methods of preparation, physical properties and chemical reactions,	Revision	Mechanisms (SN1, SN2, E1, E2 and E1cb)
November	Aryl halides: Methods of preparation, Reactions: Aromatic nucleophilic substitution and effect of substituents on reactivity.	Benzyne Mechanism: KNH2/NH3 (or NaNH2/NH3), reactivity and relative strength of C- halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.	Revision	Revision

B.Sc. III Year (Physical Chemistry)

Month/Week	First week	Second week	Third week	Fourth week
August	Quantum	Plank's radiation	heat capacity of	Postulates of
J	Mechanics-I	law, photoelectric	solids, Compton	quantum
	Black-body	effect.	effect,wave	mechanics
	radiation		function and its	,operators,
			significance	commutation
				relations,
				Hamiltonial and
				Hermitian
				operator,Role of
				operators in
				quantum
				mechanics
September	Determination of	Physical	dipole moment	Application of
September	wave function &	Properties and	and structure of	magnetic
	energy of particle	Molecular	molecules,	susceptibility,
	in one	Structure Optical	Magnetic	magnetic
	dimensional box,	activity,	permeability,	properties –
	Pictorial	polarization –	magnetic	paramagnetism,
	representation	(clausius –	susceptibility and	diamagnetism
	and its	Mossotti	its determination.	and
	significance	equation). dipole	its actermination.	ferromagnetics.
	Significance	moment,		Terrornagneties.
		included dipole		
		moment,		
		measurement of		
		dipole moment		
		by different		
		methods.		
October	Spectroscopy-I	Rotational	Revision	Spectroscopy-II
	Electromagnetic	Spectrum -		Vibrational
	radiation,	Energy levels of		spectrum
	statement of	rigid rotator		Infrared
	Bornoppenheimer	,selection rules,		spectrum: Energy
	approximation,	spectral intensity		levels of simple
	Degrees of	distribution using		harmonic
	freedom.	population		oscillator,
		distribution		selection rules,
		(Maxwell-		pure vibrational
		Boltzmann		spectrum,
		distribution),		intensity,
		determination of		determination of
		bond length,		force constant
		qualitative		and qualitative
		description of		relation of force
		non-rigid rotor,		constant and
		isotope effect.		bond energies
November	anharmonic	Raman Spectrum:	Revision	Revision
	motion and	Concept of		
	ı		1	i

isotopic effect on	polarizibility, pure	
the spectra., idea	rotational and	
of vibrational	pure vibrational	
frequencies of	Raman spectra of	
functional groups	diatomic	
	molecules,	
	selectin rule	